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Principles, Practicalities, and Possibilities
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Recent advances in the understanding of hu-
man brain have come about in a large part as
a result of a combination of the availability of
new functional imaging techniques, and no
less importantly, creative and careful experi-
mentation. The implementation of new brain
imaging techniques has allowed for faster,
cheaper, and more effective diagnoses and
treatments of neurological, cognitive, or neu-
rophysiologic pathologies. The most recently
developed brain activation imaging methods
to emerge have been those that use MR im-
aging. These MR imaging-based techniques
have been collectively termed functional MR
(fMR) imaging.

Use of MR imaging has grown explosively
since its discovery by Kwong et al'®® in 1991.
Some reasons for this explosive growth in-
clude the noninvasiveness of fMR imaging, the
wide availability of MR scanners capable of
fMR imaging, and the relative robustness and
reproducibility of fMR imaging results. With
these reasons for using fMR imaging came a
proportional need for caution. The technology
can be easily misused, and results can be over-
interpreted. It is absolutely essential for all
fMR imaging practitioners to have at least a

basic understanding of the essentials of fMR
imaging, which include the related physics,
physiology, postprocessing, pulse sequences,
and hardware. With a greater understanding
of these essentials, it is hoped that innovative
clinicians will pave the way for more extensive
applicability of fMR imaging. In this article,
basic concepts behind fMR imaging are clari-
fied, several practical issues related to its use
are discussed and referred to, and potential
innovations regarding fMR imaging use are
suggested. This article is organized into four
sections. First, the types of hemodynamic con-
trasts observable with fMR imaging are de-
scribed. Second, ubiquitous issues of fMR im-
aging implementation are discussed. Third,
several of the most common platforms for per-
forming fMR imaging are described. Lastly,
current MR imaging applications are men-
tioned.

HEMODYNAMIC CONTRAST

Several types of cerebrovascular informa-
tion can be mapped using MR imaging. The
tomographic information that can be obtained
include maps of cerebral blood volume! 7 13
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159-161 and Cerebral perquion,SS’ 63, 109, 119, 190, 195, 196
and maps of changes in blood volume,* perfu-
sion, & 109 17119 B 1% and oxygenation.* Fol-
lowing is a description of how these various
hemodynamic properties are selectively de-
tected using fMR imaging.

Bicod Volume

A technique developed by Belliveau and Ro-
sen et al'” 18! yges the susceptibility contrast
produced by intravascular paramagnetic con-
trast agents and the high-speed imaging capa-
bilities of echoplanar imaging (EPI) to create
maps of human cerebral blood volume (CBV).
A bolus of paramagnetic contrast agent is in-
jected (the technique is slightly invasive) and
T2- or T2*-weighted images are obtained at
the rate of about one image per second using
EP1% & 1815 Ag the contrast agerii passes
through the microvasculature, susceptibility
gradients (magnetic field distortions) are tran-
siently produced. These gradients, which last
the amount of time that it takes for the bolus
to pass through the cerebral vasculature, cause
intravoxel dephasing, resulting in a signal at-
tenuation that is linearly proportional to the
concentration of contrast agent,”™ 1™ which
in turn is a function of blood volume.

Changes in blood volume that occur during
hemodynamic stresses or during brain activa-
tion can then be created by subtraction of two
maps: one during a “resting’’ state and one
during a hemodynamic stress or neuronal acti-
vation.” The use of this method marked the
first time that hemodynamic changes accom-
panying human brain activation were mapped
with MR imaging.

Blood Perfusion

An array of new techniques now exist for
mapping cerebral blood perfusion in humans.
The MR imaging techniques are similar to
those applied in other modalities, such as
positron emission tomography (PET) and
single-photon emission-computed tomography
(SPECT), in that they all involve arterial spin
labeling. The MR imaging-based techniques
hold considerable promise of high-spatial reso-

* References 12, 29, 74, 106, 118, 144, 145, 146, 176, 181,
and 182.

lution without the requirement of contrast
agentinjections. They use the fundamentalidea
of magnetically tagging arterial blood outside
the imaging planeand then allowing flow of the
tagged blood into the imaging plane. The radio
frequency (RF) tagging pulse is usually a 180-
degree pulse that “inverts’’ the magnetization.

Generally, these techniques can be subdi-
vided into those which use continuous arterial
spin labeling, which involves continuously in-
verting blood flowing into the slice," and
those which use pulsed arterial spin labeling,
periodically inverting a block of arterial blood
and measuring the arrival of that blood into
the imaging slice. Examples of these tech-
niques are “echo planar imaging with signal
targeting and alternating RF (EPISTAR)” (Fig.
1A), which involves alternately inverting slabs
of magnetization above and below the imaging
slice,** and “flow-sensitive alternating inver-
sion recovery (FAIR)” (Fig. 1B), which in-
volves the alternation between slice-selective
and nonslice-selective inversion. The latter
was introduced by Kwong et al'” % ™ and
referred to as FAIR by Kim et al.'"” Recently,
a pulsed arterial spin labeling technique
known as “quantitative imaging of perfusion
using a single subtraction (QUIPSS),” has been
introduced.”™ ™ In the case of the pulsed tech-
niques, pairwise subtraction of sequential im-
ages (Fig. 1C), with and without the applica-
tion of the RF tag outside the plane, gives a
perfusion-related signal.

Variation of the delay time between the in-
version or tag outside the imaging plane and

‘the acquisition of the image gives peifusion

maps highlighting blood at dxfferent stages of
its delivery into the imaging slice. Because
there is necessarily a gap between the proximal
tagging region and the imaging slice, there is
a delay in the time for tagged blood to reach
the arterial tree; this delay time can be highly
variable, ranging from about 200 ms to about
1 s for a gap of 1 cm. At 400 ms, typically only
blood in larger arteries has reached the slice,
and the pulsed arterial spin labeling signal is
dominated by focal signals in these vessels,
whereas at 1000 ms tagged blood has typically
begun to distribute into the capillary beds of
the tissue in the slice. Images acquired at late
inversion times can be considered qualitative
maps of perfusion. Figure 2 shows perfusion
maps created at different TI times using both
the FAIR and the EPISTAR technique. As TI
is lengthened, tagged blood distributes from
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lary beds. In the capillaries, the tagged blood
water exchanges almost completely with
tissue water. To quantify perfusion using
these techniques it is necessary to more care-
fully model the phenomena and relevant vari-

method is performed by application of the in-
version pulse, always in the same plane. In
this case, the intensity of all images obtained
will be weighted by modulation of longitudi-
nal magnetization by flowing blood and also

'y beds of ables. ¥ .19 1 For quantification, a minimum by other MR parameters that normally contrib-
red at late of two subtractions at different TIsarerequired  ute to image intensity and contrast (proton
jualitative to calculate the rate of entry of tagged blood  density, T1, T2). Therefore, this technique
perfusion into the slice (perfusion).” allows only for observation of changes in flow
ising both For the application of mapping of human  that occur over time with brain activation. This
jue. As TI brain activation (i.e., to only observe technique was first implemented by Kwong
utes from activation-induced changes in blood perfu- et al"® to observe activation-induced flow
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Figure 2. Comparison of EPISTAR and FAIR at corresponding
delay time (T1) values. As delay time is lengthened, tagged blcod
distributes from large arteries into smaller vessels and capillary
beds. in the capillaries, the tagged blood water exchanges almost
completely with tissue water. Short delay times highlight rapidly
flowing blood, and the long delay times highlight capiliary bed per-
fusion.
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changes in the human brain. In this seminal
paper, activation-induced signal changes asso-
ciated with local changes in blood oxygenation
were also observed.

Blood Oxygenation

In 1990, pioneering work of Ogawa et
al'* %1% and Turner et al'® demonstrated that
MR signal in the vicinity of vessels and in
perfused brain tissue decreased with a de-
crease in blood oxygenation. This type of phys-
iological contrast was coined “blood oxygen-
ation level dependent” (BOLD) contrast by
Ogawa et al.'*

The use of BOLD contrast for the observa-
tion of brain activation was first demonstrated
in August of 1991, at the 10th Annual Society
of Magnetic Resonance in Medicine meeting.*!
The first papers demonstrating the technique,
published in July 1992, reported human brain
activation in the primary visual cortex® % and
motor cortex.'> ™ Two™ " of the first three
reports of this technique involved the use of
single-shot EPI at 1.5 Tesla. The other'® in-
volved multishot “fast low angle shot”
(FLASH) imaging at 4 Tesla. Generally, a small
local signal increase in activated cortical re-
gions were observed using gradient echo pulse
sequences, which are maximally sensitive to
changes in the homogeneity of the main mag-
netic field.

The working model constructed to explain
these observations with gradient-echo im-
aging was that an increase in neuronal activity
causes local vasodilatation which, in turn,
causes an increase in blood flow. This results
in an excess of oxygenated hemoglobin beyond
the metabolic need, thus reducing the propor-
tion of paramagnetic deoxyhemoglobin in the
vasculature. This hemodynamic phenomenon
was previously suggested using non-MR im-
aging techniques.”®® A reduction in deoxy-
hemoglobin in the vasculature causes a reduc-
tion in magnetic susceptibility differences in
the vicinity of venules, veins, and red blood
cells within veins, thereby causing an increase
in spin coherence (increase in T2 and T2*), and
therefore an increase in signal in T2* and T2-
weighted sequences.

Presently, the most widely used fMR im-
aging technique for the noninvasive mapping
of human brain activity is gradient-echo im-
aging using BOLD contrast. The reasons for

this are that gradient-echo T2*-sensitive tech-
niques have demonstrated higher activation-
induced signal change contrast by about a
factor of two to four than T2-weighted, flow-
sensitive, or blood volume-sensitive tech-
niques, and BOLD contrast can be obtained
using more widely available high-speed mul-
tishot non-EPI techniques. Although T2*-
weighted techniques are sensitive to blood
oxygenation changes in vascular structures
that include large vessels that may be spatially
removed from the focus of activation, for
most applications the sacrifice in functional
contrast-to-noise ratio in techniques more sen-
sitive to microvascular structures does not out-
weigh the necessity for the highest possible
contrast-to-noise ratio in functional images.
Successful implementation of MR imaging be-
gins with a knowledge of the hemodynamic
contrast that can be detected. An understand-
ing of several ubiquitous fMR imaging issues
is also critical.

UBIQUITOUS ISSUES OF
MR IMAGING

Although progress is being rapidly made,
many issues in fMR imaging remain incom-
pletely understood. Following is a description
of the current state «:f understanding regarding
some general MR imaging issues, categorized
into interpretability, sensitivity, and some un-
knowns that remain to be resolved.

interpretability

The question of interpretability regards the
concern of exactly what the relationship is be-
tween the fMR imaging signal and underlying
neuronal activation. Two “filters” separate di-
rect observation of neuronal processes using
fMR imaging. The first is the relationship be-
tween neuronal activation and hemodynamic
changes, and the second is the relationship be-
tween hemodynamic changes and MR signal
changes.

When a population of neurons experiences
membrane polarity changes during activation,
measurable electrical and magnetic changes in
the brain are created.” ™ ' Because of the
energy requirements of membrane repolariza-
tion and neurotransmitter synthesis, brain acti-
vation also causes a measurable increase
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in neuronal metabolism.” 9 129 136 150, 151, 158

Through incompletely understood mecha-
Illsmsﬂ 83, 115, 116, 127, 131, 140, 158, 184 thCSQ Lhanges are
accompanied by changes in blood flow,* vol-
ume, 16,70, 164, 184, 185 and OXygen.atloﬂ 70, 79, 80, 84, 184, 185
It is not known whether these changes are con-
stant across tasks and across regions in the
brain, or exactly what mediates them.

Over the past 5 years, considerable progress
has been made in the characterization of the
second relationship-—that between activation-
induced hemodynamic changes and the MR
imaging signal changes. To follow, the issue
of MR imaging-achievable hemodynamic
specificity is discussed. Also discussed are the
upper limits of temporal and spatial resolu-
tion, and the dynamic range of MR imaging,.

Hemodynamic Specificity

A high priority in fMR imaging is to accu-
rately correlate activation-induced MR signal
changes with underlying neuronal processes.
It is generally accepted that perfusion and oxy-
genation changes in capillaries are closer in-
both space and time to neuronal activation
than those arising from arteries or veins. As
mentioned, different pulse sequences can be
made sensitive to specific populations of vessel
sizes, blood flow velocities, and contrast mech-
arnisms.

The fMR imaging pulse sequence that gives |

the highest functional contrast-to-noise ratio is
a T2*-weighted gradient-echo sequence, which
is likely to have contrast weighting, which in-
cludes large draining vein effects and, in the
case of short TR-high flip angle sequences
(short TR values are required for non-EPI fMR
imaging sequences), large vessel arterial in-
flow effects. Sequences that may be able to
more selectively observe capillary oxygenation
or perfusion effects are less robust. They have
a lower functional contrast-to-noise ratio, are
generally less time efficient, and may not allow
extensive multislice imaging. The tremendous
need for high fMR imaging contrast-to-noise
ratio, high-image acquisition speed, and high
flexibility, such as multislice imaging, has to
date outwelghed the need, in most cases, for
selective observation of capillary effects for
most applications. Enhancements in fMR im-
aging sensitivity may allow these hemody-

* References 48, 59, 68, 83, 99, 100, 116, 127, 131, 140,
158, and 184.

namically selective pulse sequences to be more
commonly used. The strategies for achieving
hemodynamic specificity not only include
pulse sequence modifications but also simple
vein and artery identification strategies or even
activation strategies which remove draining
vein effects. To follow, several of the more
common pulse sequences and paradigm strat-
egies for obtaining higher hemodynamic speci-
ficity are listed in alphabetical order and de-
scribed. These methods can be considered as
relevant to the goals summarized in Table 1.

Angiography.'”” '® Use of standard high-
resolution angiographic techniques can iden-
tify rapidly flowing blood. Advantages are
that it can be performed relatively quickly and
independently of the functional imaging se-
ries; disadvantages are that blood in larger ar-
teries are visualized, but slowly flowing ve-
nous blood may be missed.

Asymmetric Spin-echo.! This technique in-
volves the use of a spin-echo, but with the
readout window shifted from the spin-echo
center (asymmetrically located) so that similar
susceptibility (T2') weighting as a gradient
echo sequence is achieved. Advantages are
that rapidly flowing blood does not experierice
the 180-degree pulse, applied about 40 ms after
the 90-degree pulse, and therefore does not
contribute to the signal. This phenomenon also
reduces some of the pulsatile fluctuations over
time. Disadvantages are that the use of a spin-
echo increases imaging time by about 100 ms,
which may limit the number of slices (in space)
obtained in a TR using EPI. This time cost for
non-EPI sequences (with the possible excep-
tion of fast spin echo™) is practically prohibi-
tive. This sequence is also equally sensitive as

Table 1. HEMODYNAMIC SPECIFICITY*
Goal Method Number

Separation of flow and
oxygenation effects

Identification of large
arteries and veins

Flow: 6, 15; oxygenation: 11,
10, 14; both: 13, 18.

Veins: 4, 5,7, 11, 14;
arteries and veins: 1, 16,
19.

Partial reduction of large Veins: 2, 4, 8, 17; arteries
artery or vein effects and veins: 9, 10.

Selective imaging of Flow: 13, combination of 3
capillary effects and 13.

Oxygenation: 12; combination
of 3 and 17.

* Goals regarding the achievement of hemodynamic specificity
in fMR imaging and corresponding methods that have been pro-
posed in the literature. The method numbers correspond to the
methods listed.
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regular gradient-echo sequences to intravascu-
lar effects (T2* dephasing of the blood) from
large vessels that have slowly flowing spins
and to extravascular effects (spin dephasing
that occurs outside of the veins as a result of
magnetic field gradients extending from the
vessels due to the difference in magnetic sus-
ceptibility between the vessels and tissue) of
large vessels with intravascular signal that has
been removed by the 180-degree pulse.

Diffusion Weighting.” '™ This technique in-
corporates additional magnetic field gradients
between RF excitation and data acquisition to
selectively dephase signal from faster moving
populations of spins. Blood having rapid inco-
herent motion (i.e., blood in larger vessels)
within a voxel is dephased, and therefore re-
moved from contributing to the MR imaging
signal change. Advantages include intravascu-
lar iarge vessel effects that cannot be seen us-
ing other techniques (possibly because they
may be subvoxel in size) are reduced with
this technique. Disadvantages include the ad-
dition of diffusion weighting reduces the im-
age signal-to-noise ratio and the functional
contrast-to-noise ratio, and increases the mo-
tion sensitivity over time. This technique can
only realistically be performed using EPI. Also,
large vessel intravascular effects are not elimi-
nated. Lastly, large vessel extravascular de-
phasing effects (T2* contrast) are unaffected
and therefore may still contribute to fMR im-
aging signal changes.

High Field Strength.™* ™ 515 In the context
of MR imaging, a field strength above 2 Tesla
is considered high. Advantages are that signal-
to-noise theoretically increases linearly with
field strength. BOLD-based functional contrast
may increase from linearly or sublinearly™ to
almost quadratically.* "™ Because T1 relax-
ation rates become longer at high-field
strengths, flow imaging techniques® & & 1.1
119,190, 195, 1% also benefit because of decreased
decay of the tag signal. Higher field strength
also allows detection of more subtle effects,
higher spatial resolution, or less need for aver-
aging over fime. Also, the T2* difference be-
tween deoxygenated blood and gray matter
becomes greater, allowing clear identification
of veins as dark spots in high resolution T2*-
weighted images."™ % Disadvantages are that
high-field magnets do not have a large market,
and therefore are not as tried and true as lower
field clinical workhorses (i.e., more trouble-
shooting is needed). The primary practical

problem at high fields is the increased field
distortion due to magnetic susceptibility ef-
fects. This field distortion causes both image
distortion and signal dropouts, but because on
a microscopic scale it is also the mechanism of
BOLD contrast, techniques that are sensitive
to BOLD contrast are inherently sensitive to
these other deleterious effects. These problems
make magnetic field shirnming more impor-
tant at high fields. Because the field distortions
can only be partially removed by shimming,
they often preclude whole-brain imaging and
imaging of structures at the base of the brain.
Lastly, physiological fluctuations may increase
with field strength, which if not filtered, can
increase the noise and nullify the inherent
signal-to-noise advantages of high fields. Al-
ternatively, an increase in physiological fluc-
tuations may translate to an advantage if the
fluctuations prove to contain useful physio-
logic or neuronal information.

Hypercapnia Normalization.’ Because the
fractional signal change using BOLD contrast
is highly weighted by the distribution of blood
volume across voxels, a uniform oxygenation
increase, concomitant with a hypercapnia-
induced flow increase, would cause the BOLD
signal increase in each voxel that is in propor-
tion to underlying hemodynamic variables,
primarily venous blood volume. Maps of ve-
nous blood volume distribution can be made
in this manner. Assuming that hypercapnia
and activation cause similar hemodynamic
events,” '™ one global and the other localized
to neuronal activation, then division of a “per-
cent change during brain activaticn” image by
a “percent change during hypercapnia” image
would give a ratio map of task-induced signal
activation that is normalized to the signal
change accompanying global vasodilatation.
Advantages are that this technique has the po-
tential of normalizing for all hemodynamic
variations over space that can modulate the
signal given a constant oxygenation change,
and notjust remove large vessel effects. Disad-
vantages are division of percent change images
obtained in different imaging runs reduces the
signal-to-noise significantly, and is also highly
sensitive to systematic variations over time.
Also, giving a hypercapnic stress test before or
after every fMR imaging study is impractical
from a time, convenience, and safety view-
point.

Inversion Recovery.'” As described pre-
viously, aninversion-recovery sequence allows
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maximum sensitivity to activation-induced
perfusion-related T1 changes. Used with mini-
mally T2- or T2*-sensitive imaging (i.e., short
TE spin-echo acquisition), exclusive sensitivity
to perfusion is achieved. Advantages are if
used with minimally T2~ or T2*-sensitive im-
aging (i.e., short TE spin-echo acquisition), ex-
clusive sensitivity to flow changes is achieved.
Disadvantages are that this technique can only
be practically used with EPI because the wait-
ing period (T1) is too long for standard multi-
shot fMR imaging techniques. Also, it has
lower sensitivity to functional changes than
gradient-echo sequences.

Latency Mapping.'® It is thought that, on
activation, larger vessels ““downstream’ from
the activated region become oxygenated at a
slightly later time than capillaries or venules.
This technique uses this vessel size-specific
BOLD contrast latency to identify draining
veins. Advantages are this technique can be
applied in a post hoc manner, and is relatively
easy to implement. Disadvantages are that be-
cause of functional contrast-to-noise limita-
tions, latency differences on the order of 1 sec-
ond require significant averaging to be
differentiated. The latency differences between
large veins and capillaries may vary, and in
many cases, be less than 1 or 2 seconds, there-
fore making the technique somewhat unrelia-
ble. Also, although unlikely, it is possible that
some neuronal processes may have latency dif-
terences (or hemodynamically transmitted la-
tency differences) on the order of a second,®
therefore confounding the technique.

Latency Tagging.™ %017 This is useful for
high-resolution mapping of subtle spatial dif-
ferences in the hemodynamic response as the
cortical representation of the stimulus is con-
tinuously varied in time. This technique lends
itself to high-resolution mapping of contigu-
ous cortical regions. Advantages are that large
vessel effects may be red.uced since the stimu-
lus is continuously “on,”” but spatially modu-
lated. Large vessels, recelvmg flow from a rela-
tively large area, will be in a steadily more
oxygen-saturated state. The “'spillover” "of oXy-
genated blood is constant, therefore allowing
a higher functional spatial resolution by hav-
ing all the “spillover” effects subtracted out.
The highest fMR imaging “functional” resolu-
tion reported has been with the use of this
technique.” The functional contrast per unit
time is optimized because the entire time
course has information embedded within it.

Disadvantages are that this technique does not
lend itself to the mapping of regions in which
a continuous variation in the stimuli does not
cause a continuous varijation in the cortical re-
gions activated (i.e., those cortical representa-
tions of a time-varying stimuli that do not vary
continuously over space).

Long TR (high flip angle) or Short TR (low
flip angle).”* ! This is a method by which arte-
rial inflow effects are minimized. Differences
in steady-state magnetization between the im-
aging plane and outside of the imaging plane
are minimized. Effects elicited by changes in
activation-induced inflow (activation causes
fresh un-RF-saturated spins to enter the im-
aging plane at a higher rate} are reduced.
Advantages are that these techniques are
simple to implement and well understood.
Disadvantages are the long TR technique
(TR > 1 sec) can only be practically achieved
using EPL. Multishot techniques generally
need to use a short TR to collect images in a
practically feasible time. If a short TR is neces-
sary, reduction of the flip angle below the Ernst
angle is suboptimal from a signal-to-noise
standpoint.

Outer Volume Saturation.* This tech-
nique is similar, in principle, to the above tech-
nique, but instead of the in plane—out-of-plane
magnetization difference being decreased by
an increase in the in-plare magnetization-the
out-of-plane magnetization is reduced. This
technique reduces signal not only from in-
flowing arterial spins, but aiso inflowing large
venous vessel spins. Therefore, only smaller
(slower flowing) vein intravascular BOLD ef-
fects and large (rapidly flowing) vein extravas-
cular BOLD effects are observed. Advantages
are that implementation is straightforward.
Disadvantages are the saturation slice profile
may interfere with the signal from the slices of
interest. Rapidly flowing blood arriving from
outside of the saturation plane remains unaf-
fected.

Phase Shift Mapping.” ** If a single vein
having a single orientation is located within a
voxel, then during a change in oxygenation
the resonant frequency within that vessel will
change, causing a coherent phase shift within
the voxel, depending on the TE. These phase
shift effects are not present in voxels contain-
ing only randomly oriented capillaries. Visual-
ization of resting-state phase shifts or phase
dispersions and activation-induced phase
shifts can be used to identify large vessel ef-

124
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fects. Advantages are that this technique is
casy to implement. NMR phase images simply
need to be created. Disadvantages are that the
technique works best with very small voxels,
but may miss large vessels due to its sensitivity
to vessel orientation.

Pre-undershoot “Dip.”” ¥ Several studies
have shown an initial decrease in the fMR
imaging signal 0.5 to 2 seconds™ after the
stimulus onset, but immediately prior to the
increase in signal that is typically observed.
These changes are hypothesized to be caused
by an increase in oxidative metabolic rate® '®
or change in the ionic environment of the neu-
rons” occurring at the regions of neuronal ac-
tivity prior to subsequent flow and oxygen-
ation increases. Advantages are that assuming
that the hypothesized origins of this signal be-
havior are substantiated, observation of this
signal would allow localization of neuronal
activity with a high degree of spatial and tem-
poral specificity. Disadvantages include that
this transient signal can only be observed with
high-speed imaging (EPI) or by functional
spectroscopy. Secondly, this is an extremely
subtle effect and has not been extensively re-
produced. High contrast-to-noise ratio with
extensive averaging and physiologic noise re-
duction may be essential to observe this.
The pre-undershoot has not yet been demon-
strated in any other cortical region but vi-
sual cortex.

Spin Tagging Techniques.”‘of 63, 64, 109, 117, 119, 190,
%1% These include the array of techniques
mentioned previously. Flowing spins are im-
aged by inverting or saturating spins ouiside
the imaging plane, waiting a time period for
the tagged spins to flow into the imaging
plane, then imaging. Both resting state perfu-
sion and activation-induced perfusion changes
can be imaged. Advantages include that this is
a noninvasive and robust technique by which
quantifiable maps of flow and tlow changes
can be created. The pulse sequence can be ad-
justed so that capillary perfusion is selectively
imaged. Also, the flow images created are in-
sensitive to oxygenation effects, which trans-
lates to a potentially more direct measure of
the degree of neuronal activation. Also, be-
cause pair-wise subtraction is performed, the
images are sensitive to motion occurring only
in the brief interval (= 2 seconds) between
successive images, and much less sensitive to
typically problematic motion occurring on
longer time scales. Lastly, if each of the image

pairs is oxygenation-sensitive (i.e., T2*- or T2-
weighted), oxygenation effects can be assessed
by observation of every other image in the time
series,'™ ' therefore giving both flow and
oxygenation information simultaneously. Dis-
advantages are that presently only one or very
few imaging planes can be imaged at one time.
This technique also involves a relatively long
waiting period (TR of at least 2 seconds) for
each image, and requires that pairs of images
are subtracted, therefore reducing the contrast-
to-noise per unit time.

Figure 3 shows a comparison of a spin-
tagging technique (FAIR) with BOLD contrast
functional imaging. Low-resolution (64 X 64)
and high-resolution (128 X 128) anatomical
and functional (correlation maps) BOLD con-
trast images (gradient-echo, TE = 40 ms) were
obtained of an axial slice through the motor
cortex. Single-shot EPI was performed using
a local gradient coil'” and a 3T /60 Bruker Bio-
spec scanner (Billerica, MA). The images were
5-mm thick, and the field of view (FOV) was
20 cm. The task was bilateral finger tapping.
Resting- and active-state perfusion maps, cre-
ated using FAIR (TI == 1400, TR = 2 seconds,
spin-echo TE = 42 ms), are also shown. A func-
tional correlation map using BOLD contrast
at the two different resolutions are compared
with a functional correlation map using the
FAIR perfusion time ~ourse series. The magni-
fied images, shown in Figure 4, illustrate that
the areas of activation obtained using FAIR
and BOLD contrast generally overlap, but also
have some significani differences. These spa-
tial shifts in activation are likely to be due to
the differences in hemodynamic sensitizations
of the two sequences. FAIR imaging using a TT
of 1400 ms is optimally sensitized to imaging
capillary perfusion, as shown in the resting-
and active-state flow maps. BOLD contrast
functional images are strongly weighted by
large draining vein effects.

Tailored RF Gradient-echo Sequence.* This
technique uses a tailored RF pulse that de-
phases static and flowing tissue in homoge-
neous fields, but does not dephase tissue in
the presence of field inhomogeneities® cre-
ated around vessels containing deoxygenated
blood. Advantages are that when used in con-
junction with techniques requiring a short TR,
inflow effects are suppressed. It may be less
sensitive to motion because signal from static
tissue is suppressed; therefore, slight misregis-
tration of images will not cause large signal
changes. Also, use of this technique allows di-
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Figure 3. Comparison of perfusion-weighted and BOLD-weighted functional echo pianar images at
3 Tesla. Echo planar imaging was performed using a Bruker 3T/60 scanner and a local head gradient
coil. All images were created of the same plane in the same experimental session. The slice thickness
was 5 mm and the FOV was 20 cm. An axial plane was chosen which contained the motor cortex.
A, 64 X 64 gradient-echo anatomical image (TE = 50 ms, TR = «). B, 96 X 96 gradient-echo
anatomical image (TE = 50 ms, TR = ). C, Perfusion image created during the resting state using
a FAIR time course series (T1 = 1400 ms, Spin-echo TE = 60 ms, TR = 2 sec). D, Perfusion image
created from the same time course series as C during bilateral finger tapping. £, 64 X 64 BOLD
contrast functional correlation image created from the time series of images in which A was the first
of the series. Bilateral finger tapping was performed. F, 96 x 96 BOLD contrast functicnal correlation
image created from the time series of images in which B was the first of the series. Rilateral finger
tapping was performed. G, 64 X 64 perfusion-only functional correlation image created from the same
time series of perfusion images from which the resting state and active state imagss (C and L) were
created. Note the difference in spatial location of the area of activation between the tiow-weighted and
perfusion-weighted functional images. The “hot spot” in the BOLD contrast images is likely to be a
draining vein which does not appear in the perfusiocn-weighted functional image created using FAIR.

rect visualization of subvoxel inhomogenei-
ties, giving the potential to directly visualize
veins. Disadvantages are that it is not clear
how implementation of this for fMR imaging
is an improvement over simple flip angle re-
duction for reducing inflow effects. Because
no functional images using the technique have
yet been published, the robustness of the tech-
nique has not been demonstrated.

Short TR, Short TE Spin-echo. This tech-
nique is a simple method for achieving T1
weighting, and therefore, flow-sensitive con-
trast. A short TE spin-echo is minimally sensi-
tive to oxygenation changes, and a short TR
gives increased sensitivity to flow changes.
Advantages are that this is more time efficient
than inversion recovery sequences. It is useful
in multishot imaging and when using EPT to
sample transient hemodynamic events. Disad-
vantages are that this technique has half the
flow sensitivity of inversion recovery imaging,.

Small Voxels with High Signal fo Noise
Ratio. Reduction of the voxel size makes it
more likely that a large vein will completely
fill one or several voxels (10C'% blood volume)
whereas the blood volume per voxel from cap-
illaries remains the same (2% to 5% blood vol-
ume). With higher resolution and with high
enough signal-to-noise at high resolution to
visualize subtle capillary effects (= 1% signal
change at 1.5T), a greater stratification of vessel
effects (increase with higher resolution®) from
capillary effects (insensitive to resolution) is
achieved. Advantages are that it is relatively
casy to interpret high-resolution and high-
functional contrast to noise functional images.
Disadvantages are that because of signal-to-
noise demands, this technique is likely to be
achievable only at higher field strengths or
with significant data averaging.

Spin-echo with Long TE."* Instead of sig-
nal being collected immediately after the 90-
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Figure 4. Magnification of selected images displayed in
Figure 3 to emphasize the differences in the activation
locations that appear with different hemodynamic sensiti-
zations. A, Baseline 64 X 64 perfusion image (magnifica-
tion of 3.C). B, 64 x 64 perfusion-only sensitive functional
correlation image (magnification of 3.G). C, 64 X 64 BOLD
contrast functional correlation image (magnification of 3.E).
D, 86 x 96 BOLD contrast functional correlation image
(magnification of 3.F). E, 96 X 96 gradient-echo anatomical
image (magnification of 3.B). Dark lines in the image are
likely to be caused by deoxygenated veins.

degree pulse (during the free induction decay
[FID]), data is collected during the echo that
occurs after a refocusing (180-degree) pulse
is applied. Activation-induced changes in T2
instead of 12* are imaged. Macroscopic sus-
ceptibility gradients are refocused by the
spin-echo, but susceptibility gradients on the
spatial scale of the distance that a water mol-
ecule diffuses in an echo time (=~ 10 um)
are not refocused. It is for this reason that
spin-echo sequences are thought to be
sensitive to susceptibility gradients (and
activation-induced changes in susceptibility
gradients) caused by small compartments,
such as red blood cells and capillaries. Advan-

tages are that extravascular large vessel effects
are not seen because the refocusing pulse elim-
inates the effect of gradients on a spatial scale
significantly larger than large vessels. This
technique also has the same advantages as
technique asymmetric spin-echo. Disadvan-
tages are that with this technique, activation-
induced intravascular signal from blood in
large vessels flowing slow enough to still expe-
rience the 180-degree pulse remains present.
Secondly, the functional contrast-to-noise of
this technique is about one quarter that of
gradient-echo sequences.* *

TE Stepping.® "% This technique involves
the systematic incrementation of the echo time,
allowing acquisition of two types of hemody-
namic information simultaneously. TE step-
ping allows direct measurement of T2* (from
the slope of a monoexponential fit to the decay
curve) and measurement of inflow effects
(from the intercept of the monoexponeniial fit
to the decay curve). Advantages are that the
simultaneously provided information is useful
in that systematic errors that come from mea-
sures across trials are avoided. This is useful
for studies that require direct registration of
individual voxels and for studies in which suc-
cessive course series can never be identical,
such as those involving a hemodynamic stress
such as hypercapnia. Disadvarniages are that
the time cost for this technique is high. The
sensitivity of the technique for measuring flow
(TE = 0 intercept of R2* curve) is low.

Variance Imaging and Frequency Analy-
sis.* ¥ This technique involves the collection
of a time course series of echo-planar images,
then inspecting the series in a voxel-wise man-
ner for noise characteristics. Large vessels
seem to cause large MR signal intensity fluc-
tuations at the cardiac and respiratory cycle
rates, and are therefore identifiable. Advan-
tages are that it is relatively easy to implement.
Disadvantages are that the specificity of the
technique is unreliable in that many regions
other than large vessels (cerebral spinal fluid)
can show large pulsatile effects. Also, Fourier
analysis is performed best in conjunction with
only the rapid sampling rate of EPL

Improvements in functional spatial and tem-
poral resolution are still being rapidly made at
this stage. The maximum temporal and spatial
resolution of fMR imaging can only be fully
realized by the combination of a high contrast-
to-noise ratio, hemodynamic specificity, sig-
nificant motion and artifact reduction, and
well-controlled and carefully executed experi-
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ments. Following is a summary of the issues
in achieving high temporal and spatial resolu-
tion in fMR imaging.

Temporal Resolution

Two separate time scales are present and
separately measurable: the time for the signal
transition from one state to another and the
accuracy to which the location of the transi-
tion can be measured. Because the fMR imag-
ing signal change arises from hemodynamic
changes, the practical upper limit on functional
temporal resolution is determined by the func-
tional contrast-to-noise ratio and by the varia-
tion of the hemodynamic response latency in
space and in time.” % %1218 These variations
may be due to differences in neuronal activa-
tion characteristics across tasks,” but are more
likely to be due to differences in vessel size'®
or to regional differences in the vascular transit
rate. The latency of the hemodynamic response
has been described as a shifting and smoothing
transformation of the neuronal input.”” Al-
though this smoothing creates a transition be-
tween activation states on the order of 5 to 8
seconds, the accuracy in the measurement of
the location of this transition can be much
greater, and is limited primarily by variations
in the hemodynamic response. The upper limit
of temporal resolution discrimination has been
empirically determined to be on the order of
1 second™ or Jess.!®

The type of neuronal and hemodynamic
information that may be obtained from sig-
nals elicited from brief stimuli paradigms
may be qualitatively different from the infor-
mation elicited by longer-duration activation
times. Transient activation durations (<1 sec-
ond) are detectable as MR signal changes
which begin to increase 2 seconds after the
activation onset, and plateau at 3 to 4 seconds
after activation.” ' Figure 5 demonstrates
that functional brain maps can be created by
repeated activation periods lasting only 2
seconds. Single-shot gradient-echo EPI was
performed using the same setup as described
previously. The FOV was 20 cm and slice
thickness was 5 mm. Matrix size was 96 X
96. A time course series of 1000 axial images
(TR = 500 ms, TE = 40 ms) through the
motor cortex was obtained during which the
subject performed bilateral finger tapping for
2 seconds followed by an 18-second rest; this
cycle was repeated for 500 seconds. Figure

5A shows the time course from the motor
cortex averaged across over time. This plot
demonstrates that one limiting factor in upper
temporal resolution is the standard deviation
of the signal at each point. This variation
may be due to the system noise of the hemo-
dynamic variability over time. This plot was
then used as the reference function for subse-
quent correlation analysis. The dot product
image (a measure of the magnitude of the
signal change®) and latency map are shown
in Color Plate 2, Figure 11. The latency or
delay map shows the relative temporal delay
at which the cross-correlation with the refer-
ence function was maximized. The latency
mapping technique (latency tagging) demon-
strates that a “spread” of up to 4 seconds
in the hemodynamic response time occurs
across space. The histogram of the latencies,
shown in Figure 5B, and the latency map
demonstrate this spread over space. Note also
that the regions that show the longest delays
also generally show the highest dot product
values, and are also the areas that appear as
dark spots in the T2*-weighted anatomical
image. All of the pieces of information point
to the fact that these areas are “downstream”’
large draining vein effects.

For many types of investigations it may be
desirable to use experimental paradigms simi-
lar to those used in everti related potential re-
cordings (ERP) or magneto-encephalography
(MEG),"* in which multiple runs of transient
stimuli are averaged together. For this type of
paradigm (requiring rapid sampling), EPT is
optimal. As a side note, because of the brief
collection of time of EP] relative to typical TR
values (e.g., 50 ms relative to about 1 sec), the
between-image waiting time allows for perfor-
mance of EEG in the scanner during the im-
aging session without electrical interference
from MR pulse sequences.’

Spatial Resolution

The upper limit on functional spatial resolu-
tion, similar to the limit on temporal resolu-
tion, is likely determined not by MR imaging
resolution limits, but by the hemodynamics
through which neuronal activation is trans-
duced. Evidence from in vivo high-resolution
optical imaging of the activation of ocular
dominance columns™ % * suggests that neu-
ronal control of blood oxygenation occurs on
a spatial scale of less than 0.5 mm. MR evidence
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maintains a constant “spill-over” by always
keeping stimuli “on,” yet spatially modulated
within a region, therefore discriminating sub-
tle differences in activation within a large and
less localized “umbrella’ of increased oxygen-
ation.

In general, to achieve the goal of high spatial
resolution fMR imaging, a high functional
contrast-to-noise and reduced-signal contribu-
tion from draining veins is necessary. Greater
hemodynamic specificity, accomplished by
proper pulse sequence choice (selective to cap-
illary effects), innovative activation protocol
design (phase-tagging), or proper interpreta-
tion of signal change latency (latency map-
ping), may allow for greater functional spatial
resolution. If the contribution to activation-
induced signal changes from larger collecting
veins or arteries can be easily identified or
eliminated, then not only will the confidence
in brain activation localization increase, but
also the upper limits of spatial resolution will
be determined by scanner resolution and func-
tional contrast-to-noise rather than variations
in vessel architecture.

Currently, voxel volumes as low as 1.2 uL
have been obtained by functional FLASH tech-
niques at 4 Tesla,'® and experiments specifi-
cally devoted to probing the upper limits of
functional spatial resolution using spiral scan
techniques have shown that fMR imaging can
reveal activity localized to patches of cortex
having a size of about 1.35 mm.” These studies
and others using similar methods® % & 165170
have observed a close tracking of MR signal
change along the calcarine fissure as the loca-
tion of visual stimuli was varied.

The voxel dimensions typically used in
single-shot EPI studies are in the range of 3 to
4 mm, in plane, and having 4- to 10-mm slice
thicknesses. These dimensions are determined
by practical limitations, such as readout win-
dow length, sampling bandwidth, limits of
dB/dt (change in magnetic field over time),
SNR, and data storage capacity. Other ways
to bypass the practical scanner limits in spa-
tial resolution include partial k-space acqui-
sition® and multishot mosaic or interleaved
EPL* %1% In many fMR imaging situations,
multishot EPI may be the optimum compro-
mise between spatial resolution, SNR, and
temporal resolution for fMR imaging.

Dynamic Range

Although it is important not to interpret spa-
tial differences in fMR imaging signal change

magnitude as indications of differences in the
degree of neuronal activation (because the sig-
nal is highly weighted by hemodynamic fac-
tors such as the distribution of blood volume
across voxels), observation of differences in
the fMR imaging signal change in the same
regions, but across incrementally modulated
tasks, is possible, and may be a useful method
for extracting more direct neuronal informa-
tion from the fMR imaging time course series.

The first demonstration that fMR imaging
response is not simply binary was made by
Kwong et al."® Both flow- and oxygenation-
sensitized MR signal in V1 were measured as
flicker rate was modulated. The signal behav-
ior corresponded closely with that obtained
with a previous PET study.” Other studies
have revealed a responsivity in higher visual
areas to contrast and flicker rate™ ' In the
primary motor cortex a linear signal depen-
dence on finger tapping rate has been demon-
strated.’™ In the primary auditory cortex, a
sublinear dependence on syllable presentation
rate has been demonstrated.”

Sensitivity

Extraction of a 1% signal change (typical of
fMR imaging) against a backdrop of motion,
pulsation, and noise requires careful consider-
ation of the variabies which influence the sig-
nal detectability. These variables range from
factors that increase signal. increase fMR im-
aging contrast, reduce physiologic noise, and
reduce artifactual signal changes. Following is
a list of some salient variables that are impor-
tant to consider in relation to optimization of
fMR imaging sensitivity.

Averaging. Averaging of sequentially ob-
tained images increases the signal-to-
noise by the square root of the number
of images collected. A difficulty is that if
averaging is performed over too long of a
period (over about 5 minutes), systematic
artifacts (i.e., slow movement or drift)
tend to outweigh the benefits obtained
from averaging for that duration.

Field strength. As previously discussed,
signal-to-noise and functional contrast in-
crease with field strength. Difficulties
such as increased shimming problems, in-
creased physiologic fluctuations, and lim-
itations on the possible RF coils used also
increase with field strength. It has yet to be
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determined if gains in sensitivity obtained
by increasing field strength cannot be
achieved by other methods at lower fields,
or if the gains in sensitivity outweigh the
disadvantages of imaging at high field
strengths, Figure 6 shows a mosaic of ana-
tomical images and functional contrast-
to-noise images obtained of the same axial
slice and same subject at different field
strengths and different TE values.” Allim-
ages were obtained using single-shot EPI
with a local head gradient coil, TR = 1
second, thickness = 5 mm, matrix size =
64 X 64, FOV = 24 cm. The task was bilat-
cral finger tapping. Note that, as expected,
the contrast-to-noise appears to be maxi-
mum at about the TE = T2* at each field
strength. A general increase in contrast-
to-noise is observed with field strength.

Filtering. In most fMR imaging studies using

EPI, the noise over time is dominated not
by system noise, but by physiologic fluc-
tuations. These fluctuations correspond
with specific frequencies (i.e., heart and
respiration rates). Filtering out of these
frequencies can increase the functional
contrast-to-noise ratio, or at least make the
noise closer to Guassian so that parametric
statistical tests can be applied.

Gating. Gating is a powerful technique with

one serious drawback that has one poten-
tially powerful solution. Gating involves
triggering of the scanner to the heart beat
so that an image is always collected at
specific phase of the cardiac cycle. This is
advantageous because a primary source
of noise is collection of images at different
phases of the cardiac cycle, causing head
misregistration (the brain moves with ev-
ery heart beat) and pulsatile flow artifacts.
Image collection at a single phase would
eliminate this misregistration, thereby re-
ducing the noise and potentially increas-
ing the spatial resolution of MR imaging
(i.e., the brain would be imaged at a single
position all of the time). The drawback
to gating is that if the heart rate changes
during the collection of images, the MR
signal intensity also changes, depending
on the tissue T1 and the average TR used.
This generally causes very large fluctua-
tions in the data, making gating relatively
worthless in the context of fMR imaging.
A technique has recently been developed
to correct for the global fluctuations that

occur with heart rate changes,” therefore
making gating a feasible option in MR
imaging. Gating would be especially use-
ful for identifying activation in structures
at the base of the brain because that is
where pulsatile motion is greatest, where
activation is most subtle, and where acti-
vated regions are the smallest, requiring
the most consistent image-to-image regis-
tration.

Paradigm timing. The choice in MR im-

aging timing is usually determined by the
sluggishness of the hemodynamic re-
sponse (it usually is not useful to go much
faster than an on-off cycle of 8 seconds on
and 8 seconds off), the particular brain
system that is being activated (cognitive
tasks may have a more delayed response),
and the predominant frequency power of
the noise. As a rule of thumb, the goal is
to maximize both the number of on-off
cycles and amplitude of the cycle to max-
imize the power of post-processing tech-
niques, such as correlation analysis,® to
extract functional information. Generally,
contrast-to-noise ratio is maximized and
artifact is minimized by cycling the activa-
tion of the highest rate that the hemody-
namics can keep up with and by having
a time course sories no longer than about
3 to 4 minutes long.

Post-processing. Many approaches have

been used to extract from fMR imaging
daia estimates of the significance, ampli-
tude, and phase of the functional re-
sponse, and there is still surprisingly little
agreement on the appropriate techniques.
If one knows exactly the shape and phase
of the expected signal response, a matched
filter (i.e., correlation) approach may be
optimal. If the shape is unknown, use of
a single expected response function, be it
a boxcar function or a sine wave, may miss
unique activation patterns. The challenge
of accurately determining regions of sig-
nificant activation from fMR imaging data
is nontrivial, and has yet to be solved.
Some of the developments addressing this
issue include the development of accurate
and robust motion correction™ ' or sup-
pression methods, the determination of
the noise distribution,”™ %1% the determi-
nation of the temporal” and spatial* cor-
relation of activation-induced MR signal
changes and of baseline MR signal, the
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Figure 6. Axial echo-planar images of the same subject across three field strengths (0.5 T, 1.5 T, and
3T). The scanners were a GE Signa 0.5 T and 1.5 T and a Bruker Biospec 3T/60. The same gradient-
coil was used for performance of EPI on each scanner. Pulse sequences were also nearly identical.
The image parameters were: FOV = 24 cm; matrix size = 64 X 64; slice thickness = 5 mm; TR =
1 sec; flip angle = 90°. TE was varied for each time course series, which included 200 to 250 images.
The task was bilateral finger tapping for 20 sec on / 20 sec off cycles. A, The first anatomical images
in the time course series. TR = «. Note that the MRI signal decay is much slower at 0.5 T than at
3 T. B, Functional contrast to noise images corresponding to the anatomial images shown in A. Note
that the contrast to noise appears to reach a maximum at each field strength when the TE is approxi-
mately equal to the T2 of gray matter, which is about 125 ms, 80 ms, and 50 ms for 0.5 T, 1.5 T, and
3 T, respectively. Improvements in contrast to noise are apparent with field strength. What is not
apparent is if the gains at 3 T are critical to perform certain types of fMR imaging studies.
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characterization or assessment of the tem-
poral behavior or shape of activation-
induced signal changes,® * * % ¥ and
the characterization of how the previ-
ously mentioned factors vary in time,
space,'® ¥ across tasks,* > and with dif-
ferent pulse sequence parameters.'® It is
generally important to always inspect the
data for motion and not to assume too
much about the expected response, yet, at
the same time, use all of the current a
priori information about hemodynamic
responses and neuronal activation to ex-
tract meaningful information.

Pulse sequence. Pulse sequences that can be

used for fMR imaging have a wide range
of sensitivities, with gradient-echo se-
quences being the most sensitive and
time efficient. Standard clinical multishot
techniques (i.e., FLASH or gradient echo
at steady state [GRASS]) suffer from sig-
nificantly more motion-related noise than
EPI techniques or spiral multishot tech-
niques.® 12 Also, application of naviga-
tor echoes™ ! or other types of image re-
construction-related post-processing of
multishot data can significantly reduce ar-
tifactual fluctuations.

RF coil choice. The tradeoff here is regarding

spatial coverage versus sensitivity. The
smaller the coil used, the less brain tissue
it couples to. This gives a higher signal-
to-noise, but much less brain coverage.
Larger RF coils give more brain coverage,
but lower signal-to-noise. Where sensitiv-
ity is critical, a surface coil in a specific
region may be desirable. Where whole-
brain imaging is desirable, a whole-brain
quadrature RF coil is optimal.* This coil
is generally as close to the head as possible
and couples only to brain region. It should
be noted that typical whole-head and neck
coils used clinically are suboptimal for
whole-brain fMR imaging, because they
couple also to the face and neck regions
{only adding noise) and because they are
generally not as close as possible to the
head.

Voxel size. The signal-to-noise is directly

proportional to voxel volume. Functional
contrast-to-noise is optimized by match-
ing the volume of the active region to the
voxel volume. Because functional region
sizes are not well characterized and are
likely to vary widely, the optimal voxel
size is difficult to predict. Many have gen-

erally matched the voxel slice to the corti-
cal thickness. Other groups have used a
slightly thicker slice to increase brain cov-
erage given a limitation in the number of
slices obtainable. Spatial resolution may
actually be reduced with the use of
smaller voxels if the contrast-to-noise is
not high enough to detect more subtle cap-
illary effects. In such a case of low
contrast-to-noise, primarily downstream
draining veins would be detected. This
phenomenon may explain the exclusive
detection of large vessels by Lai and
Haacke et al** ' using small voxels. Over-
all, small voxels are desirable as long as
the sensitivity remains high enough to de-
tect a 1% signal change.

Some Unknowns

Although not directly related to the practical
implementation of MR imaging, some unex-
plained and controversial fMR imaging data
can give an indication of possible directions
that fMR imaging research and applications
may take in the future. Listed are four “contro-
versial” results accompanied by the hypothe-
ses related to them:

1. Post-undershouot. > 11814517 After cessation
of activation, the BOLD-weighted fMR
imaging signal is commonly observed to
undershoot the previous baseline signal
intensity. The undershoot has been ob-
served to last between 30 seconds and 2
minutes; the reasons for this are unclear.
Two hypotheses have been suggested.
The first is that on cessation of activa-
tion, neuronally triggered flow returns to
baseline, but oxidative metabolic rate
continues for several minutes, caus-
ing a reduction of signal (increased deoxy-
hemoglobin). The second hypothesis is
that on cessation of neuronal stimulation,
flow and oxygenation return to baseline
levels, but blood volume (possibly pool-
ing in draining veins) takes longer to re-
turn to baseline levels, causing the signal
to dip below baseline for a small amount
of time. As a side note, the post-activation
undershoot is not observed using T1-
weighted (flow-weighted) sequences.!®

2. Pre-undershoot.”* ™ This phenomenon is
observed less frequently. Observations
by Hennig et al* show a dip at 0.5 second.
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Observations of Menon et al show a dip
at 2 seconds, in agreement with reports
of Grinvald et al* using optical imaging.
Menon et al has put forth a hypothesis
that is similar to that of Grinvald et al**—
that on activation, an increase in oxida-
tive metabolic rate occurs before a subse-
quent increase in flow. The observations
of Hennig et al not only differ in relative
timing, but also differ in the hypoth-
esized origin. The signal is found to be
only slightly T2* (oxygenation)-related,
and primarily T1-related. The hypothesis
is that changes in the ionic environment
of the neurons caused by the influx of Na'
may rapidly change the T1 of the tissue.

. Long-term effects.”* 7 The effect of

sustained activation on fMR imaging sig-
nal intensity is controversial. Three stud-
ies with differing results have been re-
ported. Hathout et al*® have suggested
that local blood oxygenation returns from
an initially elevated level to baseline after
about 15 minutes of continuous stimula-
tion. Frahm et al” have observed a return
of oxygenation-sensitive MR signal to
baseline after about 1 to 2 minutes of sus-
tained activation, but has also observed
sustained blood flow during the entire
stimulation duration.”” Bandettini et al”*!!
have demonstrated sustained flow and
BOLD enhancement for entire stimula-
tion durations. Stimulation durations
were up to 20 minutes long. Possible ex-
planations for these differences in results
include differential effects of the particu-
lar stimuli on metabolic, hemodynamic,
or neuronal changes or differential, and
not fully understood pulse sequence sen-
sitivities.

. Noise correlation.”’ This observation is

that the noise in the MR imaging data
obtained during a resting state shows
temporal correlation across regions that
appear to be functionally connected (i.e.,
motor cortex). The predominant fre-
quency that shows most correlation is in
the 0.1 to 0.2 Hz range. The origin of these
suggests an oscillation in vascular tone
that is synched across similar functional
units in the brain. These findings may be
clinically useful in determining vascular
tone and/or diagnosing cerebrovascular
pathologies.

COMMON fMR
IMAGING PLATFORMS

In an attempt to bring much of what has
been mentioned together, this section de-
scribes some of the most commonly used plat-
forms for fMR imaging. The three types of MR
imaging pulse sequences discussed are EPI,
conventional multishot imaging, and spiral
scanning.

EPi

EPI is an ultra-fast MR imaging technique®® ©
12817 that has been, and continues to be, ubiqui-
tous in the ongoing development and applica-
tion of fMR imaging. In most of the growing
number of centers that have EPI capability, it
is the fMR imaging method of choice for most
applications. Some centers that have been us-
ing EPI for fMR imaging of humans include
Massachusetts General Hospital, Medical Col-
lege of Wisconsin, Yale, University of Cali-
fornia, San Diego, National Institutes of
Health, Michigan State, Pittsburgh, Mayo Clinic,
Duke, University of Minnesota, University of
Wisconsin, Beth Israel Hospital in Boston,
Hammersmith Hospital in London, University
of Nottingham, and Usiversity of California,
Los Angeles.

EPI has several drawbacks, including low
spatial resolution, high sensitivity to off-
resonance effects, need for specialized hard-
ware, potential for peripheral nerve stim-
ulation, and need for specialized image
reconstruction algorithms. The advantages of
EPI, which include high temporal resolution,
high flexibility for imaging several types of
phvsmlogm processes, high stability, low .im-
aging duty cycle, and low sensitivity to mo-
tion, still greatly outweigh the disadvantages
for most purposes related to fMR imaging. To
follow is a brief description of some of these
EPI characteristics.

Spatial resolution in single-shot EPI is lim-
ited either by the area of k-space that can be
sampled in approxnmate]y one T2* period or
by the system bandwidth.” The area of k-space
that can be covered can be limited by the veloc-
ity in k-space (gradient amplitude) or the accel-
eration in k-space (gradient slew rate), and is
typically limited by both.

The requirement, with EPL for strong and
rapidly switching gradients is satisfied by in-




f what has
ection de-
7 used plat-
pes of MR
d are EPI,
and spiral

chnique
be, ubiqui-
nd applica-
1e growing
apability, it
ce for most
ve been us-
ins include
ledical Col-
ty of Cali-
stitutes  of
Aayo Clinic,
niversity of
in Boston,
University
California,

luding low
ity to off-
lized hard-
lerve stim-
zed image
vantages of
resolution,
al types of
ty, low im-
vity to mo-
advantages
maging. To
me of these

EPI is lim-
that can be
* period or
a of k-space
y the veloc-
or the accel-
ate), and is

strong and
stied by in-

g

MAGNETIC RESONANCE IMAGING OF HUMAN BRAIN FUNCTION 363

creasing the gradient amplifier power or by
using a speed-up circuit, implementing reso-
nant gradient technology, reducing the induc-
tance of the gradient coils such that they can
be driven by conventional gradient amplifiers,
or increasing the field of view or lowering the
resolution to match the speed at which stan-
dard gradient amplifiers can keep up.

The first strategy is probably among the least
commonly used. GE Medical Systerns (Milwau-
kee, W1) and Siemens Medical Systems (Er-
langen, Germany) are currently marketing sys-
tems using this technique. The second strategy
is likely to be the most common EPI technique
as of yet (it has been commercially available for
the longest time). Advanced NMMR (with GE
Medical Systems) and Siemens have been mar-
keting this technology for several years. Both
strategy 1 and 2 use whole-body gradient coils,
which allows performance of EPI for functional
or kinematic studies on the heart, lungs, diges-
tive system, kidneys, throat, joints, and mus-
cles. In the context of MR imaging, whole-body
gradients allow more accessibility for patients
with mobility problems and for easy delivery
of brain activation stimuli.

The third strategy is used primarily by sev-
eral centers that have home-built gradient coils
(two examples are National Institutes of
Health" and the Medical College of Wiscon-
sin'™) marketed by Medical Advances in Mil-
waukee, Wisconsin (using the coil design of
E.C. Wong), Advanced NMR, and Siemens,
among others. This strategy is implemented
by using a gradient coil that is localized only
to the head. The gradient fields are optimized
for a region that usually covers the brain or
the region of RF sensitivity.

Lastly, single-shot EPI can be carried out on
aconventional imaging system without the use
of local gradient coils (using the whole-body
gradient coil) by simply using a large FOV or a
small image matrix size.” fMR imaging using
EPIwith voxel sizes of approximately 10 mm X
10 mm X 10 mm (approximately the resolution
of a PET scanner) has been successfully per-
formed on a standard GE 1.5 Tesla Signa sys-
tem' with excellent results. This type of
echoplanar imaging capability exists on practi-
cally every clinical scanner in the world.

A major nonhardware-related limitation on
gradient slew rate is the biological threshold
tor neuronal stimulation due to time-varying
magnetic fields. At present, high-performance
gradient systems (either local gradient coils or

high-powered whole-body systems) are capa-
ble of exceeding the Food and Drug Adminis-
tration guidelines on gradient field slew rate
(dB/dt). This is a large determinant of the up-
per limit on the resolution possible using
single-shot EPI to image humans.

The requirements for successful implemen-
tation of EPI for fMR imaging are not limited
to hardware. In most cases, phase correction
algorithms applied during image reconstruc-
tion are usually necessary tc compensate for
timing errors related to imperfections in gradi-
ents, gradient-induced eddy currents, or static
field inhomogeneities.

Because of the long sampling time and arti-
factual phase modulation, EPI is sensitive to
two types of off-resonance-related artifacts in
EPL signal dropout and image distortion. Sig-
nal dropout is primarily due to intravoxel
phase dispersion resulting from through plane
variation of magnetic field. The problem of
signal dropout in gradient-echo sequences can
be reduced by reduction of the TE, reduction
of the voxel volume, or by localized shimming.
Also, this effect is greatly reduced in spin-echo
EPI because the macroscopic off-resonance ef-
fects are refocused at the echo time.

Image distortion is caused by an off-reso-
nance—-related phase modulation that occurs
during data acquisition. In EPI, this linear
phase modulation creates primarily a linear
distortion of the image in the phase encode
direction. Several post-processing methods
have been put forward for correcting image
distortion in EPL'® ¥

With the use of EPI, approximately 10 im-
ages may be obtained per second, giving the
option to image the entire brain in under 2
seconds or to sample a smaller number of im-
aging planes to allow a more dense sampling
of the time course. Another possibility in EPI
is to sample less densely in space, but to cover
a large volume in a single shot; this technique
is known as echo-volume imaging (EVI)."# 72

A practical but significant factor to be con-
sidered when performing fMR imaging with
EPI is the rapidity with which large amounts
of data are collected. This data may then go
through several additional transformations
{adding to the total required data storage ca-
pacity) before a functional image is created. If
10 slices having 64 X 64 resolution are acquired
every 2 seconds (typical for multislice fMR im-
aging), then the data acquisition rate is approx-
imately 2 MB per minute.
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Conventional Muilti-shot imaging

High-temporal-resolution fMR  imaging
techniques developed for use with conven-
tional gradients include multishot FLASH,®*
51, 62, 73,121 148 43¢ho-FLASH,” low-resolution
EPL 22 multishot or interleaved EPL* ' echo-
shifted flash,'* ' keyhole imaging,”” and fast
spin-echo.”

Only a few centers have been able to success-
fully implement conventional multishot tech-
niques in a routine and robust manner for MR
imaging.® 7 % 1% The advantage to multishot
techniques is the ability to achieve relatively
high in-plane spatial resolution, less sensitivity
to off-resonance effects from poor shim, and
the availability of the technique on most clini-
cal scanners. The disadvantages are lower tem-
poral resolution, increased noise due to nonre-
peated shot-to-shot misregistration of k-space
lines®™ ¥ ¥ (from variable sampling of low-
frequency lines at different phases of the car-
diac cycle), lower signal due to the need for
short TR and low flip angles, reduced capabil-
ity to perform multislice fMR imaging as rap-
idly as with EPL and less flexibility or “dead
time” (that comes with a long TR typically
used for EPI) for other types of pulse sequence
manipulations. More time-efficient and stable
multishot techniques include fast spin echo™
and spiral scan imaging® 1*" 14

Spiral Scanning

Of non-EPI techniques, multishot spiral-
scan sequences used in conjunction with a
single-point phase correction scheme have
demonstrated the most temporal stability.®'*
Spiral scanning also involves oversampling at
the center of k-space, where the acquisitions
are intrinsically gradient-moment nulled, pro-
viding less sensitivity to phase errors caused
by brain, blood, or cerebral spinal fluid pulsa-
tions with the cardiac cycle.

Spiral scanning has been used for many fMR
imaging applications,*® * &% and when used
in conjunction with a phase-tagging activation
scheme, has demonsirated the highest func-
tional resolution (1.35 mm) to date.” In studies
where high spatial resolution is important or
where EPI is unavailable, spiral scan appears
to be the method of choice.

Figure 7 shows a comparison between spiral
scan and EPL Single-shot EPI (TE = 40 ms,
TR = 1 second, flip angle = 90 degrees) is
compared with 10-shot spiral scanning (TE =
30 ms, TR = 250 ms, flip angle = 30 degrees).
The EPI anatomical images show distortion
relative to the spiral scan images, which are
distortion-free. The contrast-to-noise images
indicate similar areas of activation and similar
regions of highest signal changes, likely to be
large veins. With these parameters, no addi-
tional inflow effects were observed in the func-
tional images obtained using spiral scanning.
Note also that in the spiral scan anatomical
image, dark spots appear in the same region
as the areas of greatest activation. These dark
areas may be regions of significant intravoxel
dephasing in the vicinity of veins, as described
by Haacke et al.*

APPLICATIONS

Most studies involving the development of
fMR imaging from a contrast mechanism,
pulse sequence, and post-processing stand-
point have used primary raotor and visual cor-
tex activation due to the easily elicited and
robust signal changes. Following are some of
the applications of fMFP. imaging that have
gone beyond simple finger tapping or visual
stimulation. The auditory cortex,” ® somato-
sensory cortex,™'® and cerebellum® have been
studied. Detailed mapping of regions a< tivated
in the primary motor cortex® %110 12 13 1% and
visual cortex™ %% 1% have been performed
as well. Activity elicited in the gustatory cortex
has been mapped.® Other studies using fMR
imaging have observed organizational dif-
ferences related to handedness.! Activa-
tion changes during motor task learning
have been observed in the primary motor
cortex” and cerebellum.® Cognitive studies
in normal subjects have included word gen-
eration,'® % 162 mental rehearsal of motor
tasks and complex motor control,'™ * visual
processing,™ ¥ 7 speech perception,™* sem-
antic processing,” * * working memory,* vi-
sual recall,'”? and mental rotation.”

Studies have also been performed involving
specific pathologies. Abnormal connectivity of
the visual pathways in human albino volun-
teers has been demonstrated.” Changes in or-
ganization in the sensorimotor area after brain
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the effects of drugs on brain activation have
been presented.”™ Activity associated with
obsessive-compulsive behavior has also been
observed.®®

The immediate potential for clinical applica-
tion is currently being explored. “Essential”
areas of the sensory and motor cortex, as well
as language centers, have been mapped using

tical regions that should be avoided during
surgery. In the context of presurgical mapping,
fMR imaging has demonstrated the ability to
reliably identify the hemisphere where lan-
guage functions reside,'*'#* potentially com-
plementing or replacing the Wada test (hemi-
sphere specific application of an anesthetic
amobarbital) for language localization that is
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also currently used clinically prior to sur-
gery.”” Several review articles and chapters on
fMR imaging techniques and applications are
Currently avaﬂable_Z, 4,5, 9,19, 43, 45, 149, 152, 167, 169, 179

CONCLUSIONS

Since its start in 1991, fMR imaging has been
evolving rapidly into a highly robust and
widely used technique. Itis wrought with tech-
nical difficulties, most fully solvable. Alterna-
tively, it is likely to have at least several uses
that have not yet been uncovered. First re-
viewed in this article were the current types
of hemodynamic contrast available with fMR
imaging, with emphasis on the newest and
most promising technique of quantitative
blood flow mapping. Second, the ubiquitous
issues of MR imaging, including interpret-
ability, sensitivity, and some current un-
knowns, were described in detail. Third, com-
mon fMR imaging platforms, with emphasis
on hardware and pulse sequence issues, were
described. Lastly, the ever-growing clinical
and research applications were outlined. The
basic principles, practicalities, and potentials
of the array of techniques known as fMR im-
aging (as of April 1996} have been described.
It is hoped that the reader will come away
with a more clear prospective of this intricate,
technically challenging, complicated, yet ro-
bust and truly exciting, new brain imaging
technique.
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Figure 11. Map of the dot product (a measure of the activation-induced signal change magnitude), and
the relative latencies or delays of the reference function at which the correlation coefficient was maxi-
mized. The spatial distribution of hemodynamic delays has a standard deviation of about 900 ms. The
longest delays approximately match the regions that show the highest dot product, and the area where
veins are shown as dark lines in the T2* weighted anatomical image. (See article by Bandettini and
Wong in this issue.)



